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Theory of effective g-factors in ternary semiconductors: 
application to Pb,-&,Te 

R L Hota and G S Tripathi 
Department of Physics, Berhampur University, Berhampur 760007, Orissa, India 

Received 27 February 1991, 

Abstract. The effective g-factor, obtained from the spin contribution to the Knight shift, is 
calculated from first principlesfor ternary semiconductorsand applied to Pb,-,Sn,Te. Ask- 
level k. - theory, within the framework of the effective-mass representation. is used to 
calculate the effective g-factor as a function of carrier density, tin concentration and tem- 
perature. The temperature and concentration dependence of the energy gap is used via the 
virtual-crystal approximation. The agreement with the available experiments is good, and 
the trends and resultsobtained are in overall conformity with that found in the experiments. 

1. Introduction 

The calculation of the effective g-factor in semiconductors is important because of the 
dependence of the Knight shift on this quantity (Tripathi et a1 1981,1982). Recently, it 
has received particular attention in view of its anomalous characteristic in the relatively 
new semiconductors, namely the semimagnetic semiconductors (Dobrowolska et a1 
1981, Dobrowolskieta11981,Bastardeta11981, Heimanetal1983), where theg-factors 
are found to be enhanced by two orders of magnitude with reference to the corresponding 
ordinary semiconductors. 

The concept of 'effective spin Hamiltonian' and effective g-factors was first intro- 
duced by Roth (1960), who obtained an expression for this factor, considering the 
antisymmetric part of the g-tensor, noting that the symmetric part vanishes for a crystal 
with inversion symmetry, Yafet (1963) obtained an expression for the square of the 
effective g-factor, by considering explicitly the spin-rbit interaction. Misra and 
Kleinman (1972) derived an expression for the effective Pauli spin susceptibility as a 
function of the square of the effective g-factor. They have shown the equivalence of 
their results with that of Yafet (1963). While the effective Pauli spin susceptibility 
depends on the square of the effective g-factor, the dependence of the Knight shift on 
theeffectiveg-factor islinear (Tripathieta11981,1982, deCastro and Schumacher 1973). 
Thus, the sign of the g-factor is ascribed from the sign of the Knight shift (Hewes et nl 
1973). Our interest in the effective g-factor in ternary semiconductors, particularly in 
Pb,-,SnrTe, is motivated primarily due to the controversy attached to the role and sign 
ofg-factorsin the Knight shift ofthesesystems (Leloupand Sapoval 1979). Furthermore, 
although the band-edge g-factors in PbTe have been discussed by several authors 
(Mitchell and Wallis 1969, Leloup and Sapoval 1979, Leloup et a1 1973, Sapoval and 
Leloup 1973, Bernick and Kleinman 1970), there has been no satisfactory calculation 
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fmm first principles of the effective g-factors in Pb,-,Sn,Te as a function of carrier 
concentration, tinconcentration andtemperature. Thiswork presents such acalculation, 
for the first time, and may be viewed as as extension of our calculations of the magnetic 
properties of these systems (Tripathi eta1 1981,1982, Misraetal1984,1985,1986,1987, 
Misra andTripathi 1989, Hota and Tripathi 1990). 

The organization of the paper is as follows. Section2 discusses the general expression 
for the effective g-factor. We discuss in section 3 the effective-mass approximation and 
therelatedk 3 rrbandmodelasappropriate toPbt-,SnxTe. Section4presents the results 
of our calculation followed by a discussion. We summarize the work in section 5 with an 
appropriate conclusion. 

R L Hota and G S Tripathi 

2. General expression for the effective g-factor 

As mentioned earlier, the effective g-factor is an integral part of the Knight shift (K,). 
The general expression for Ks, in the presence of many-body and spin-orbit effects, is 
(Tripathi eta! 1981,1982) 

where or,@) is the exchange-enhancement factor; X is the hyperline vertex, which 
includes the contact, dipolar and orbital hyperfine interactions; f’(E,,) is the energy 
derivative of the Fermi function; and gc.fj;”(k) is the intra-band effectiveg-factor and is 
given by 

Here go is the free-electron g-factor; U are Pauli spin matrices; ?r are the momentum 
operators in the presence of spin-orbit interaction; n and m are band indices and the p 
are spin indices; E,, = Em(k) - E.(k); &*pp is an antisymmetric tensor of third rank; and 
we follow Einstein summation convention. In the absence of spin-orbit interactions, 
the second term becomes zero, and the effective g-factor reduces to the free-electron 
g-factor go. The matrix elements are taken between the periodic parts of the Bloch 
functions, and in general represented by 

Opp,,. = I ~ ~ ~ O “ ( r ) u , ~ d ~ r .  (2.3) 

In PbTe. the energy surfaces at the L point are approximately prolate spheroids with 
the major axes in [lll] directions. Therefore, within the first Brillouin zone, there 
are eight half-spheroids, or equivalently four complete spheroidal energy surfaces. 
However, the spheroidal approximation is only good for low carrier concentrations. 
With k vectors away from the band edge, the surfaces of constant energy become 
cylindrical. In the absence of a magnetic field, all the four valleys at (1 11) zone edges 
are equivalent. However, in an arbitrar). oriented external magnetic field, neither the 
matrix elements of U nor the Fermi population factors are identical in the four valleys 
at the (11 1) zone edges. However, when the field is applied along the [OOI] direction, 
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all the four valleys are equivalent. Following Mitchell and Wallis (1969), the crys- 
tallographic axes are taken along X =  [i i2],  Y = [IT01 and Z = [lll]. Thus, K can be 
written as 

K = 4(4K' + $Kt) (2.4) 
where the factor 4 comes about because of the four valleys, and K' is the longitudinal 
component along [l 111 and K'is the transverse component along [Ti2]. Assuming the 
hypefine matrix elements to be isotropic, we can write 

g = ;g' + $gl (2.5) 
where 

and 

(2.7) 
m i n  

3. Electronic structure 

3.1. Background 

The IV-VI semiconductors, which include the lead salts (PbS, PbSe and PbTe), are 
among the most interesting materials in solid-state physics (Cohen and Chelikowsky 
1989). The above statement is justified for the fact that, despite their simple crystal 
structure (NaCI), some of these compounds exhibit ferroelectric, paraelectric and 
superconducting behaviour. Moreover, the temperature dependence of the energy gaps, 
the high value of static dielectric constants and the electronic structure of some of the 
alloys of these compounds appear to be anomalous compared to the conventional 
behaviour of the diamond and zincblende semiconductors. 

PbTe and SnTe are considered as prototypes for this group and studies of these 
semiconductors are used to illustrate common features. The electronic structures of 
PbTe and SnTe and other compounds have been extensively investigated, both theor- 
etically and experimentally. A variety of band calculations such as the relativistic aug- 
mentedplane-waves (RAPW) method (Conklinetall965, RabiiandLasseter 1969, Rabii 
1969), the orthogonalized plane-wave (OPW) method (Herman er ai 1968), the empirical 
pseudopotential method (Tung and Cohen 1969, Bernick and Kleinman 1970, Kohn et 
ai 1973, Martinez et a1 1975) and the relativistic Green function or Korringa-Kohn- 
Rostoker (KKR) method (Overhof and Rossler 1970) have been performed for these 
materials. More recently, a self-consistent RAPW calculation for SnTe (Melvin and 
Hendry 1979) and a first-principles pseudopotential total-energy calculation for the 
ground-state properties and electronic structures of PbTe and SnTe (Rabe and Joan- 
opoulos 1985) have been reported. Although there is general agreement among the 
calculations on the energy levels and their spacings, the results do differ in detail. Thus, 
the finer features of the band structures for this group of compounds are not as well 
understood as in the case of the diamond and zincblende structures. Many of the existing 
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PbTe SnTe Figure 1. Band picrureof Pb, .,Sn,Te asa function 
of tin concentration. 

Table 1. L-point basis functions and energy levels 

MW basis functions: 
only one of the Kramen 
conjugate pairs for each 
level is given 

Magnitudes 
(Bernickand 

Energy Kleinman) 
levels (2 Ryd) 

L , n  = c o s 0 -  L 7 -s ine '  x *  1 0.049 
Ljru=(l/VZ)(-x-1 + i r + T )  E i  0.047 

Ei 0.007 L -  - '  - an - sin e I t t cos O - x ,  1 
L;n= - icosb'*R t - s i n e '  S, J. E :  0.0 
L:a=(1/VZ)(S. 1 t i s ,  r )  E; -0.029 
L&= i s inB+ R f  t cos0'  S ,  1 E; -0.049 

band-structure calculations have some empirical input, andself-consistent methods have 
not yet been actively applied to this area. Thus calculations of physical quantities like 
the Knight shift(IC),magneticsusceptibilityandeffectiveg-factorsgiveadequate insight 
about the electronic structure of these materials. 

The minimumenergy gaps in both PbTe and SnTeoccur at theLpoint of the Brillouin 
zone. The conduction and valence band edges have L, and L: symmetry in the lead 
salts. but the ordering is reversed in the case of SnTe. Thus, the alloying of SnTe with 
PbTe causes a gradual variation of the energy gap as a function of composition. It has 
been established that the conduction and valence bands actually cross at a critical 
composition, and this band inversion composition is somewhat temperature-dependent . 
A schematic picture of this crossing is shown in figure 1. In addition to the band-edge 
levels, two more bands on each side of the energy gap are of importance for the 
interpretation of physical properties. The basis functions and corresponding energy 
levels in order from the top of the conduction band to the bottom of the valence band in 
the Mitchell and Wallis (MW) (1966) notation are given in table 1. We follow the Bernick 
and Kleinman (1970) band ordering. 

In table 1, cos 8' and sin 6' are the amplitudes of single-group functions in the 
double-group basis functions. The spatial parts of the basis functions have the following 
transformation properties about Pb: R transforms like an atomic s state, xl: and z 
transform like atomic p functions with m, = -t-1 and 0, and S, transform like atomic d 
functions with mz = 21. 
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3.2. Six-level k . IF theory 

We consider the eigenvalue equation 

[rz//zm + V(r)lx(k,  4 = Ex@, r)  

X(k, r)  = C,(k) ei(k-k'Jo)"Vdo(r). (3 .2)  

(3.1) 

where x(k ,  r) are the Luttinger and Kohn (1955) wavefunctions 

n 

Here qdo(r) is the Bloch function at k,: 

tpnk0(r) = eixo.'Unko(r). (3.3) 

Using equations (3 .2)  and (3.3) in equation ( 3 . 1 ) ,  multiplying both sides of equation 
(3.1) on the left by u&(r) and integrating over the whole space, we obtain 

where 

The integral in equation (3.5) is over the unit cell. Let us assume that is the L point in 
the Brillouin zone. Referring to this point as the origin in k-space, we write equation 
(3.4) as 

Equation (3.6) gives a complete description of energy bands throughout k-space in terms 
of energy Enxo and momentum matrix elements znns. This is the basic equation of the 
k . n representation. 

In PbTe, there are six levels around the energy gap that contribute significantly to 
a k . IF perturbation theory. The band-edge levels according to Bernick-Kleinman 
ordering ( L & f f ,  La2p, L&ffand L&p)  arediagonalied exactlyand the interaction with 
other bands is treated up to second order. 

The diagonalization of the band-edge states gives the wavefunctions 

(3.76) 
l / i (h /m)sk-  

L & f f  112 L.u + E G [ w ( l  + w ) ] l / z  

( 3 . 7 4  
l + w  
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f i ( h / m ) s k  - 
L -  (Y (3.7d) 

112 EG[W(l + w)]"2 
L6zP - 

and the energies 

E; = E; + hzk2/2m + &(w - 1)  

E t  = E: + h'k2/2m - f E G ( w  - 1). 

In equations (3.7) and (3.8), 

(3.8a) 

(3.8b) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

The interaction between band-edge states has so far been considered. Interaction of far 
bands has been considered up to second order in perturbation theory and the result is 

E,,,(k) = + h2k'/2m + +EG(w - 1)  + Mlc,"ki  + M,,,k: 

+ [M,,,/w(l+ W )  +M,.,/wlk; + [M,,.,/w(l + ~3 + M,,v/4k:  

+ [M,c,v/w(l + W )  + M,,v/wlk:ki (3.15) 

where the suffixes c and v denote the conduction and valence bands except in the third 
term in which case these are denoted by + and - signs. M, to M, are complicated 
functions of momentum matrix elements and energy gaps at the L point (Misra et a1 
1984). The chemical potential is calculated, using a self-consistent method, from the 
following expression: 

p po  + [ p  - (h2/2m)(3nZF)2'3] (3.16) 

where 

(3.17) 

and 

p o  = ( h * / 2 m ) ( 3 ~ ~ n ) ~ / ~ .  (3.18) 

The factor 8 in equation (3.17) accounts for the spin degeneracies of the energy levels 
and the four L valleys of the Brillouin zone; p o  is the free-electron chemical potential 
andn is the carrier density. We usecylindrical coordinatesfor the evaluation of equation 
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L&n -Ek,  Bk.  sk.. -ik, H k ,  iH'k,  
LL.6 Bk,  Ek,  !k: sk,  iHk-  H'k- 
LhB Dk+ Fk2 F.. dk+ i l k .  P k .  
Lhn -Fk, D k .  dk-  Fx J k ,  iJ'k, 
Lt .6  A k .  - iAk,  -iak, ak. 0 - Lk, 
L : a  -iA'k- A'k, n'k, -io'k- Lk, 0 

(3.17) and the integration is done numerically. The variation of the energy gap with 
temperature and tin concentration is considered using the formula (Dimmock et ai 1966) 

(3.19) 

whereEG(O, T) represents the temperaturedependenceofPbTeenergygapandisgiven 

(3.20) 

It was found that for a fixed carrier density the chemical potential decreases with 

&(x,  T )  = l E ~ ( 0 ,  T ) ' -  0 . 5 4 3 ~ 3  0.02wzI eV 

by 
&(O, T )  = &(O,O) + 4.85 X 10-4TeV K-' 

where Tis the temperature in kelvins. 

increase in tin concentration. 

4. Results and discussion 

In order to evaluate theg-factors we need to know the momentum matrix elements. We 
givethematrixelementsof k. TI between thedouble-groupbasisfunctionsat theLpoint 
in table 2 (Mitchell and Wallis 1969). 

In table 2, the constants used are 

s = -sin 8+ sin 8- P,, - cos B +  COS 8-  PI, 

a = (1Jd2) sin 8- P,, + i cos 8- P ,  

d = sin 0- cos 8- P31 - sin e+ cos 8* PI, 

t = sin 0- cos e+ PI1 + cos 0- sin e+ P 2 ,  

f= -sin e- sin e+ PI, - CM 8+ cos 8- Pz,  

H = (l/dZ) cos 8+ P , ,  + i sin B +  P, 

J = (l/d2) sin e+ PI, + i cos 8+ P ,  

L = i P , ,  

B = cos O +  sin 8- P I ,  - cos 8- sin e+ P,, 

A = (l/V2) cos 8+ P,, - i sin 8- P ,  

D = cos 8+ cos 8-  P,, + sin 8+ sin 8- PIS 
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E = -cos O f  cos 0- P,, +sin e+ sin 0- P2,  

F = - cos 8- sin e* P I ,  + sin 0 -  cos e+ P,, 

6307 

Inequations(4.1),Pii,P2i, P3i, P2zandP,3are themomentummatrixelements between 
the single-group states (Mitchell and Wallis 1969). 

For the conduction band g-factor, we have, using equation (2.61,. 

m f n  

(4.2) 
and 

(4.3) 
where m takes all other energy levels except the energy levels represented by V J ,  and 
v2. 

From equations (3.7),  (3.8). (3.13) and ( 4 . 1 )  to (4.3). and table 2, we can write. 

l + w  f i 2   COS^+ 
g: = g, [ - (%) cos2e- + (2tzkS - sZk:) ]  

mZE&,w(l + w )  

+ m '([(""S. 2w m 2 E & w ( l + w )  

2fi2(s2kz - 2t2k:) + m Z E b w ( l  + w )  

and 

l + w  . f i z  c ~ s z  e+ 
g: = go [ sin2 e- + (2t2k: - s2kZ)] m2EZ,w(l + w )  

2fi2BE(s2ki - 2t2k:) 
+ m Z E $ w ( l  + W ) [ 2 ( E i  - E ; )  - EG(W - 1 ) J  

In the band-edge limit, i.e. when k i  = 0 and k, = 0, our results reduce to the Mitchell 
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Figure 2. Effective g-factor versus carrier con- 
centration for n-type PbTe. 

Figure 3. Effective g-factor versus carrier con- 
centration for p-type PbTe. 

and Wallis (1969) expressions. The g-values were calculated by substituting k, by its 
Fermi surface value k,, which is obtained by solving the equation 

(4.6) 
for k: = 0. The single-group momentum matrix elements, the amplitudes of single 
groups in the double-group eigenfunctions and the energy levels were obtained from 
Bemick and Kleinman (1970). Thevalence bandg-factorswere obtained fromequations 
(4.4) and (4.5) by the following exchanges: d U B ,  U U H,f- E ,  J U A and L .= -L, 
for the matrixelements, and E:," E : ,  E; . -  &:,E;.* &;,and EG = - EG for theenergy 
levels. 

We have plotted the g-values versus carrier density for both n- and p-type PbTe in 
figures2and3. It isseen that theg-valuesdecrease with increase in carrierconcentration. 
Infigures4and5 we have plotted theg-valuesfor n-andp-type Pb,-,Sn,Te, respectively, 
as functions of temperature for two typical values of carrier concentrations and tin 
concentrations. We found that for fixed carrier concentrations and tin concentrations, 
g-valuesdecreasewith temperature. For fixedcarrierdensity and temperature, however, 
g-values increase with increase in tin concentration (figures 6 and 7). Our results are 
compared with experiment where available in table 3. The agreement between our 
results and experiment is, except in a couple of cases, good to excellent. It may be noted 
that Hewes eta1 (1973) have obtained better agreement than us. However, their results 
were obtained by using several parameters obtained from experiment. On the other 
hand, ours is the first ab initio calculation for the g-factors as functions of carrier density, 
tin concentration and temperature. 

We have seen that the transverseg-factorschange sign bychangingthesignofsin 8'. 
which does not change the energy levels, as has been discussed earlier (Tripathi et al 

E,(k;,,  k,) - p = 0 
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at 

Figure 4. Effective g-factor versus temperature Figure 5. Effective g-factor versus temperature 
for two typical values of carrier (electron) and tin for two typical values of carrier (hole) and tiq 
concentrations. A:n = 3.0 X 10"cm-r,x = 0.16; concentrations. A:p = 3.0 X lO"cm-',x = 0.15; 
B: n = 1.2 x loLR cm-'. x = 0 . 1 6 ;  C n = B: p = 1.2 X 1OIx x =0.15; C p = 
3.0 X l O " ~ m - ~ . x =  0.08;D:n = 1.2 X 10'Rcm-3. 3.0 x lO"cm-',x = O.M);D:p = 1.2 x 10'Rcm-3. 
x = 0.08. x = 0.00. 

1981,1982). Thus, we believe that the sign of the g-factor is not unique, as is the case in 
the Knight shift. Our resultscan be improved by the following methods. We consider a 
virtual crystal approximation, which is only good for low concentration of tin. More 
realistic calculations valid for an alloy system should be considered, as has been done 
in the electronic structure calculation of Pb,-,SnxTe (Lee and Dow 1987). We have 
considered exact diagonalization of band-edge states only and the far bands are taken 
into account through second-order perturbation. Thisshould be improved for the results 
to be valid for carrier densities beyond the limit of about 1018cm-3. 

5. Summary and conclusions 

In this work, we have made a careful analysis of the effective g-factors in Pb,_,SnxTe. 
This work presents, to our knowledge, the first ab initio calculation of effectiveg-factors 
as functions of carrier density, tin concentration and temperature. The formulation is 
general and can be applied to tbe other ternary compound, Pb, _,Ge;Te, of this family. 
We have not done this, because of the unavailability of data for the variation of the 
temperature-dependent energygap as afunction of Ge concentration. Except in acouple 
of cases, our results agree fairly well with experiment where available. Also, the overall 
trends and results obtained are in general conformity with the experimental results. 
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Flp re  6. Effective g-factor versus tin concen. Figure 7. Effective g-factor versus tin concen- 
tration for two typical values of carrier (electron) tration for two typical values of carrier (hole) 
concenlration and temperature. A n = concentrationandtemperature.Ap = 3.0 x 10" 
3 . 0 ~  lO"cm-',T= OK;B:n= 1 . 2 ~  IO'*cm", c d ,  T = 0 K B: p = 1.2 x i O I R  T = 0 K; 
T = 0 K: C n = 3.0 X 10" cm-', T =  50 K; D: C. p =3.0 x 10" cm-3, r= 5 0 ~ ;  D: p = 
n = 1 . 2 ~ 1 O ~ ~ c m ~ ' . T = 5 0 K .  i . 2 x 1 0 ' X u n ~ s , T = 5 0 K .  

The formulation can suitably be applied to study the enhancement of g-factors in 
semimagnetic semiconductors, such as Pb,-,MnxTe and Pb,_,Fe,Te. However, the g- 
factor expressions should include the effects of s-d and s-f hybridizations, as has been 
incorporated in the case of the Knight shift (Tripathi 1985, Tripathi et a/ 1987). Such a 
formulation is in progress and results will be reported when available. 
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